Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment N. Evangeliou¹ *, S. Zibtsev², V. Myroniuk², M. Zhurba², T. Hamburger¹, A. Stohl¹, Y. Balkanski³, R. Paugam⁴, T. A. Mousseau⁵, A. P. Møller⁶, S. I. Kireev⁷ ¹Norwegian Institute for Air Research (NILU), Department of Atmospheric and Climate Research (ATMOS), Kjeller, Norway. ²National University of Life and Environmental Sciences of Ukraine, Kiev, Ukraine. ³CEA-UVSQ-CNRS UMR 8212, Institut Pierre et Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement (LSCE), L'Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex, France. ⁴King's College London, London, United Kingdom. ⁵Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA. ⁶Laboratoire d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex, France. ⁷Deputy General Director of the State Enterprise "Chernobyl Special Kombinat", Chernobyl city, 6 Shkolna street, Ukraine. ^{*} Corresponding author: N. Evangeliou (Nikolaos. Evangeliou@nilu.no) ## SUPPLEMENTARY VIDEO LEGENDS, FIGURES AND TABLES **Video S 1.** Plume evolution of the radionuclides emitted after the forest fires in Chernobyl in April – May 2015 ⁵⁶. The video depicts surface activity concentrations (μBq m⁻³) of the radionuclides transported over Europe [FERRET. Ferret Analysis Script Tool (FAST), Data visualisation and analysis version 6.96. (2015) Available at: http://ferret.pmel.noaa.gov/Ferret/home (Accessed: 17th December 2015)]. **Video S 2.** Plume evolution of the radionuclides emitted after the forest fires in Chernobyl in August 2015 56 . The video depicts surface activity concentrations (μ Bq m⁻³) of the radionuclides transported over Europe [FERRET. Ferret Analysis Script Tool (FAST), Data visualisation and analysis version 6.96. (2015) Available at: http://ferret.pmel.noaa.gov/Ferret/home (Accessed: 17th December 2015)]. **Fig. S 1.** Burned area classification according to Landsat 8 OLI data for fires burning in spring (upper panels) and summer (lower panels) 2015. The left column shows fire severity and the right shows the type of these fires [R. *The R Project for Statistical Computing version 3.2.3.* (2015) Available at: https://www.r-project.org (Accessed: 17th December 2015)]. **Fig. S 2.** Fire dynamics in the Chernobyl exclusion zone for the April fires according to MODIS data. Dots show location of hot spots, while the active fires of April 27th are depicted in red, of April 28th in purple and of April 29th in yellow. Dark areas in the background of the hot spots denote the burned area [R. *The R Project for Statistical Computing version 3.2.3.* (2015) Available at: https://www.r-project.org (Accessed: 17th December 2015)]. **Fig. S 3.** Deposition densities (number of observations = 48,781) of ¹³⁷Cs, ⁹⁰Sr, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu and ²⁴¹Am in longitudes 29.3°E–30.0°E and latitudes 51.2°N–51.6°N as recorded by the Ukrainian authorities prior to the spring 2015 fires. The plots show the minimum value, the 25th percentile (in red), the median, the 75th percentile (in blue) and the maximum. The data are stored in http://radio.nilu.no [MS-Excel. Microsoft Excel for Mac 2011 version 14.5.9. (2015) Available at: https://www.microsoft.com/en-us/download/details.aspx?id=50361 (Accessed: 17th December 2015)]. **Fig. S 4.** Median injection heights (km above sea level – ASL) and burned mass (Tg) of the fires occurring over Europe between 26 April and 2 May 2015 and between 9 and 14 August 2015 recorded by the PRMv2 [R. *The R Project for Statistical Computing version 3.2.3.* (2015) Available at: https://www.r-project.org (Accessed: 17th December 2015)]. ## TABLES FOR SUPPLEMENTS Table S 1. Example of Landsat 8 OLI images used in remote sensing analysis for the spring and summer fires of 2015 in the CEZ. | Fire date | Image date | Path/row | State of the territory | ID image | |----------------------|--------------------------------------|-----------------------|---|-----------------------| | | April 23, 2013 | 182/024 | Pre-fire | LC81820242013113LGN01 | | Amril 27, 20, 2015 | April 26, 2014 | 182/024 | Pre-fire
Post-fire
Post-fire | LC81820242014116LGN00 | | April 27–29, 2015 | April 29, 2015 | | LC81820242015119LGN00 | | | | April 24, 2015 | 182/024 | Post-fire | LC81810242015144LGN00 | | | August 3, 2015 182/024 Pre-fire | Pre-fire | LC81820242015215LGN00 | | | Assessed 9, 12, 2015 | July 18, 2015 | 182/024 | Pre-fire Post-fire Post-fire Post-fire Post-fire Post-fire Post-fire Post-fire Pre-fire Post-fire Post-fire Post-fire Post-fire | LC81820242015199LGN00 | | August 8–13, 2015 | September 4, 2015 | 182/024 | Post-fire | LC81820242015247LGN00 | | | September 20, 2015 181/024 Post-fire | LC81810242015263LGN00 | | | **Table S 2.** Burn severity classifications according to the Landsat images used in the GIS analysis. | Burn severity | dNBR value | Type of fire | Type of fire | | |---------------|------------|--|--|--| | Unburned | -500 to 99 | No fire | No fire | | | Low | 100 - 269 | Ground fire | Ground fire | | | Moderate-Low | 270 - 439 | Ground fire | | | | Moderate-High | 440 – 659 | Crown fire (if occupy more than 25% of stand area) | Crown fire (if occupy more than 25% of stand area) | | | High | 660 – 1300 | Crown fire (if occupy more than 25% of stand area) | | |